If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10=8
We move all terms to the left:
3x^2-10-(8)=0
We add all the numbers together, and all the variables
3x^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $
| y=5(-9+5y) | | 2/3x=-1/2+5 | | 14x2+19x-3=0 | | -14=2x+3(6x+22) | | (x-4)(20-x-4)=48 | | -4b-4+8b=32 | | (2x+3)(x+4)=228 | | 0=64+7x+x^2 | | e-9=11 | | 0=64+7x=x^2 | | 2x^+11x-216=0 | | 5x-40=2x+20 | | 3.8x+4=5/2×4 | | x+3x+3=43 | | 10j=-90 | | -3z=-33 | | j-(-21)=12 | | 2y=4-9 | | k+(-6)=17 | | y^2-10=-3y | | v/(-3)=-7 | | 07x–1.4=–3.5 | | 8y^2-28y+12=0 | | 35=2a+7a | | Y+y/3=180 | | 6×^2-8x=8 | | 27^8x=81 | | 12x+7+9x+5=180 | | (x+2)(x+3)+(x-3)(x-2)-2x(x+1=0 | | 160=180n-360 | | -2(1+8x)=126 | | x2+8=0. |